What Are They and How to Use MTP/MPO Cables

 

With ever-greater bandwidths and network connections to deal with in data centers, conventional dual-fiber patch cables like LC cable can no longer meet the demands. To solve this problem, MTP/MPO cables accommodating more fibers in one multi-fiber MTP/MPO connector came into the market, which proves to be practical solutions for 40G/100G/400G high-density cabling in data centers. This article is going to introduce different MTP/MPO cable types and their applications.

 

MTP/MPO Cable Overview

MPO (Multi-Fiber Push-on) is the first generation of clip clamping multi-core optical fiber connector. MTP® is a registered trademark of US Conec Ltd. , which is an advanced version of MPO, with better mechanical and optical performance. They look alike and are completely compatible and intermateable. MTP/MPO cables are composed of MTP/MPO connectors and optical fibers. MTP/MPO connectors have a female type (without pins) or a male one (with pins) as shown in Figure 1. The position of guide grooves also results in “Key Up” and “Key Down” MTP/MPO connectors. And a white dot is for identifying fiber position in connectors. MTP/MPO connectors largely increase the cable density and save circuit card and rack space, which are well suited for current 40G/100G cabling and future network speed upgrades.

 

MTP/MPO Cable Solutions

A variety of MTP/MPO cables are available for different application environments and requirements based on functions, polarity, fiber count, fiber mode and jacket rating.

 

By Function

MTP/MPO trunk cables, MTP/MPO breakout cables and MTP/MPO conversion cables are ideal for high density cabling network, offering better network capacity and flexibility.

 

MTP/MPO Trunk Cables

 

MTP/MPO trunk cables are terminated with an MTP/MPO connector (female/male) on both ends, which are available in 8-144 fiber counts for users’ choices. Typically, these multi-fiber MTP/MPO trunk cables are ideal for creating a structured cabling system, including backbone and horizontal interconnections such as 40G-40G and 100G-100G direct connections, so as to achieve a simple and efficient high-performance networking.

 

MTP/MPO Breakout Cables

 

MTP/MPO breakout cables (aka. harness cables or fanout cables) are terminated with a female/male MTP/MPO connector on one end and 4/6/8/12 duplex LC/FC/SC/ST connectors on the other end, such as 8-fiber MTP/MPO to 4 LC harness cables and 12-fiber MTP/MPO to 6 LC harness cables. Typically, these breakout cables are ideal for short-range 10G-40G and 25G-100G direct connections or for connecting backbone assemblies to a rack system in the high-density backbone cabling.

 

MTP/MPO Conversion Cables

 

MTP/MPO conversion cables have the same fanout design as MTP/MPO breakout cables but are different in fiber counts and types. They are terminated with MTP/MPO connectors on both ends. Specifically, commonly-used ones are 24-fiber to 2×12-fiber, 24-fiber to 3×8-fiber, 2×12-fiber to 3×8-fiber MTP/MPO conversion cables. They are especially ideal for 10G-40G, 40G-40G, 40G-100G, 40G-120G connections, which eliminate fiber wasting and largely increase the flexibility of the existing 12-fiber and 24-fiber MTP/MPO cabling system.

 

By Polarity

Polarity refers to the matching of the optical transmitter and receiver at both ends of a fiber link. In traditional cabling systems, connectors like LC/ SC can be easily matched, so there is no polarity issue. However, due to the special design of MTP/MPO connectors, polarity issues must be addressed in high-density MTP/MPO cabling systems. To ensure proper polarity, the TIA 568 standard defined three connectivity methods called Method A, Method B, Method C. So there are Type A, Type B and Type C MTP/MPO cables with different structures according to these methods. These MTP/MPO cables usually connect with different MTP/MPO cassettes and fiber patch cables to ensure the right polarity of the optical circuit. Read the white paper Understanding MTP/MPO Cable Polarity for more information about common 8/12/24-fiber MTP/MPO cable polarity and connectivity methods.

 

By Fiber Count

8/12/24-fiber MTP/MPO cables are usually used for 40G/100G and the latest 16-fiber cables are especially designed for short-reach 400G cabling in Hyperscale data centers. 12-fiber MTP/MPO cable is the earliest developed and most commonly-used solution in 10G-40G, 40G-100G connections. But when using it to transmit 40G QSFP+ module or 100G QSFP28 module, 4 fibers will be left unused, leading to much lower fiber utilization than 8-fiber cables. While 8-fiber MTP/MPO cable system can transmit the same data rate as 12-fiber cabling with less cost and insertion loss, making it a more cost-effective solution. 24-fiber MTP/MPO cable is commonly used to establish 100GBASE-SR10 links between CFP to CFP transceivers. It allows the use of the ratified 100GBASE-SR10 20-fiber technology today, maximizing the infrastructure investment in the event of 4×25 Gb/s ratification.16-fiber MTP/MPO cables utilize the same external footprint as traditional 12-fiber MT (Mechanically Transferable) ferrule. MTP/MPO-16 solution is ideal for aggregation of multiple 8-fiber parallel transceivers and direct coupling to emerging 16-fiber parallel optic links such as 400G QSFP-DD and OSFP.

 

By Fiber Mode

MTP/MPO cables fall into multimode OM3/OM4 and single-mode OS2 cables. Multimode OM3/OM4 MTP/MPO cables are mostly used for short distances such as inside a building or campus, allowing maximal transmission distance of 100m (OM3) or 150m (OM4) at 40 Git/s. Single-mode OS2 MTP/MPO cables are suitable for long-reach transmission and widely deployed in carrier networks, MANs (Metropolitan Area Network) and PONs (Passive Optical Network). With less modal dispersion, the bandwidth of OS2 is higher than OM3/OM4.

 

By Jacket Rating

According to different fire rating requirements, MTP/MPO jackets are classified as LSZH (Low Smoke Zero Halogen), OFNP (Optical Fiber Nonconductive, Plenum), CMP (Communications Multipurpose Cable, Plenum) etc. LSZH MTP/MPO cables are free of halogenated materials (toxic and corrosive during combustion), which are ideal for confined places due to better protection for people and equipment during a fire. OFNP MTP/MPO cables contain no electrically conductive elements and are designed with the highest fire rating, which can be installed in ducts, plenums and other spaces for building airflow. CMP MTP/MPO cables can restrict flame propagation and smoke exhaust rate during a fire, which are suitable for plenum spaces, where air circulation for heating and air conditioning systems are facilitated.

评论

此博客中的热门博文

Common Armored Fiber Optic Cables

what the Differences Between FBT Splitter and PLC Splitter

Introduction of Optical Fiber Couplers and How Do They Work?